Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 132: 102567, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38331547

RESUMO

Oomycetes are fungus-like heterotrophic organisms with a broad environmental distribution, including marine, freshwater, and terrestrial habitats. They function as saprotrophs that use the remains of other organisms or as parasites of a variety of eukaryotes, including protists, diatoms, dinoflagellates, macroalgae, plants, fungi, animals, and even other oomycetes. Among the protist hosts, the taxonomy, morphology, and phylogenetic positions of the oomycete parasitoids of diatoms have been well studied; however, this information concerning the oomycete parasitoids of dinoflagellates is poorly understood. During intensive sampling along the east and west coasts of Korea in May and October 2019, a new species of oomycetes was discovered and two strains of the new parasitoid were successfully established in cultures. The new oomycete parasitoid penetrated the dinoflagellate host cell and developed to form a sporangium, which was very similar to the perkinsozoan parasitoids that infect marine dinoflagellates. The most distinctive morphological feature of the new parasitoid was a central large vacuole forming several long discharge tubes. The molecular phylogenetic tree inferred based on the small subunit (SSU) ribosomal DNA (rDNA) revealed that the new parasitoid forms a distinct branch unrelated to other described species belonging to early-diverging oomycetes. It clustered with species belonging to the genus Sirolpidium with strong support values in the cytochrome c oxidase subunit 2 (cox2) tree. Cross-infection experiments showed that infections by the new parasitoid occurred in only six genera belonging to dinoflagellates among the protists tested in this study. Based on the morphological and molecular data obtained in this study, we propose to introduce a new species, Sirolpidium dinoletiferum sp. nov., for this novel parasitoid, conservatively within the genus Sirolpidium.


Assuntos
Dinoflagelados , Oomicetos , Animais , Dinoflagelados/genética , Filogenia , DNA Ribossômico/genética , Especificidade de Hospedeiro , Oomicetos/genética
2.
Harmful Algae ; 123: 102390, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36894211

RESUMO

The number of perkinsozoan parasitoid species known to infect dinoflagellates has increased to 11 over the last two decades. However, most of the current knowledge about the autecology of perkinsozoan parasitoids of dinoflagellates has derived from studies of one or two species, thereby making it difficult to directly compare their biological traits at the same time and even their potentials as biological control agents if they are to be exploited to mitigate harmful dinoflagellate blooms in the field. This study investigated total generation time, the number of zoospores produced per sporangium, zoospore size, swimming speed, parasite prevalence, zoospore survival and success rate, and host range and susceptibility for five perkinsozoan parasitoids. Four of the species (Dinovorax pyriformis, Tuberlatum coatsi, Parvilucifera infectans, and P. multicavata) were from the family Parviluciferaceae and one (Pararosarium dinoexitiosum) was from the family Pararosariidae, with dinoflagellate Alexandrium pacificum employed as a common host. Distinct differences in the biological traits of the five perkinsozoan parasitoid species were found, suggesting that the fitness of these parasitoids for the common host species differs. These results thus offer useful background information for the understanding of the impacts of parasitoids on the natural host population and for the design of numerical modeling including the host-parasitoid systems and biocontrol experiments in the field.


Assuntos
Alveolados , Dinoflagelados , Dinoflagelados/parasitologia
3.
Front Microbiol ; 12: 748092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912310

RESUMO

The phylum Perkinsozoa is known as an exclusively parasitic group within alveolates and is widely distributed in various aquatic environments from marine to freshwater environments. Nonetheless, their morphology, life cycle, the identity of the host, and physiological characteristics remain still poorly understood. During intensive sampling along the west coast of Korea in October and November 2017, a new parasitoid, which shares several characteristics with the extant families Perkinsidae and Parviluciferaceae, was discovered and three strains of the new parasitoid were successfully established in cultures. Cross-infection experiments showed that among the examined planktonic groups, only dinoflagellates were susceptible to the new parasitoid, with infections observed in species belonging to eight genera. Even though the new parasitoid shared many morphological and developmental characteristics with other Perkinsozoan parasites, it differed from them by its densely packed trophocyte structure without a large vacuole or hyaline material during the growth stage. These characteristics are common among Parviluciferaceae members. Furthermore, through palintomic extracellular sporogenesis, it produced characteristic interconnected sporocytes resembling a string of beads. Phylogenetic analyses based on the small subunit and large subunit ribosomal DNA sequences revealed that the new parasitoid was distantly related to the family Parviluciferaceae and was more closely related to the families Perkinsidae and Xcellidae. Morphological, ultrastructural, and molecular data on the new parasitoid raised the need to erect a new family, i.e., Pararosariidae, within the phylum Perkinsozoa with Pararosarium dinoexitiosum gen. et sp. nov. as the type species. The isolation and establishment in culture of the new parasitoid outside the family Parviluciferaceae in the present study would contribute to the better understanding of the diversity of Perkinsozoan parasites and provide useful material for comparisons to other parasite species in the further study.

4.
Harmful Algae ; 103: 101982, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980432

RESUMO

In planktonic predator-prey interactions, predation pressure could be affected by several factors associated with prey, including cell size, shape, nutritional quality, presence of chemical deterrents, and movement behaviors. In addition, parasitism may also play an important role in predator-prey interaction by infecting one or both partners involved in the biological interaction. In this study, parasite mediation in predator-prey interactions of planktonic protists was addressed using model organisms commonly observed in temperate coastal environments, namely, a phototrophic dinoflagellate Akashiwo sanguinea as a potential host and prey, a heterotrophic dinoflagellate predator Luciella masanensis, and a dinoflagellates-infecting parasitoid Parvilucifera infectans. Parasite mediation permitted L. masanensis to exploit the prey A. sanguinea that the predator was otherwise unable to use or did not prefer. However, parasite-mediated exploitation seems to be dependent on the infection cycle of P. infectans. Although zoospores and mature sporangium produced from infected A. sanguinea were not ingested by the predator L. masanensis, both newly infected (i.e., cells that zoospores had just penetrated) and infected (those containing early to late trophocytes) A. sanguinea cells attracted numerous L. masanensis cells and were rapidly ingested by the predator, leading to the predator's positive growth. The results from mixed culture experiments of the three protists showed that the presence of P. infectans at low density led to co-occurrence of the three protists. Thus, the parasitoid seems to play the role of a mediator in either inedible prey- or predator-dominated environments, leading to co-occurrence of the three protists.


Assuntos
Dinoflagelados , Parasitos , Animais , Processos Heterotróficos , Plâncton , Comportamento Predatório
5.
Protist ; 171(4): 125743, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32731120

RESUMO

The phylum Perkinsozoa is known as an exclusively parasitic group including the parasites of shellfish, fish, dinoflagellates, cryptophytes, and tadpoles and at present comprises seven genera across three families (Parviluciferaceae, Perkinsidae, and Xcellidae), with the genus Parvilucifera having the most abundant species in the family Parviluciferaceae. During intensive sampling along the Korean coast in August and September 2017, a new species of the genus Parvilucifera was discovered and successfully established in cultures. Morphological and ultrastructural observations revealed that the new parasitoid shares almost all known diagnostic characters with other species of Parvilucifera, except that its sporangium has a higher number of apertures although with smaller diameters than those in P. infectans. Molecular phylogenetic trees based on both nuclear small subunit (SSU) and concatenated SSU and large subunit (LSU) ribosomal DNA (rDNA) sequences revealed that the new parasitoid was nested within the family Parviluciferaceae and had a sister relationship with P. infectans. Based on morphological, ultrastructural, and molecular data, we propose to erect a new species, P. multicavata sp. nov., for the new parasitoid found in this study.


Assuntos
Alveolados/classificação , Dinoflagelados/parasitologia , Filogenia , Alveolados/genética , Alveolados/ultraestrutura , DNA Ribossômico/genética , República da Coreia , Água do Mar/parasitologia , Especificidade da Espécie
6.
Protist ; 170(1): 82-103, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30797136

RESUMO

Perkinsozoa is an exclusively parasitic group within the alveolates and infections have been reported from various organisms, including marine shellfish, marine dinoflagellates, freshwater cryptophytes, and tadpoles. Despite its high abundance and great genetic diversity revealed by recent environmental rDNA sequencing studies, Perkinsozoa biodiversity remains poorly understood. During the intensive samplings in Korean coastal waters during June 2017, a new parasitoid of dinoflagellates was detected and was successfully established in culture. The new parasitoid was most characterized by the presence of two to four dome-shaped, short germ tubes in the sporangium. The opened germ tubes were biconvex lens-shaped in the top view and were characterized by numerous wrinkles around their openings. Phylogenetic analyses based on the concatenated SSU and LSU rDNA sequences revealed that the new parasitoid was included in the family Parviluciferaceae, in which all members were comprised of two separate clades, one containing Parvilucifera species (P. infectans, P. corolla, and P. rostrata), and the other containing Dinovorax pyriformis, Snorkelia spp., and the new parasitoid from this study. Based on morphological, ultrastructural, and molecular data, we propose to erect a new genus and species, Tuberlatum coatsi gen. n., sp. n., from the new parasitoid found in this study. Further, we examined and discussed the validity of some diagnostic characteristics reported for parasitoids in the family Parviluciferaceae at both the genus and species levels.


Assuntos
Alveolados/classificação , Alveolados/fisiologia , Dinoflagelados/parasitologia , Alveolados/citologia , Alveolados/ultraestrutura , Dinoflagelados/citologia , Dinoflagelados/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Filogenia , RNA de Algas/análise , RNA de Protozoário/análise , República da Coreia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...